Petroleum Exploration Initiative

Interior Basin

Two Dimensional Basin Modelling of the Neoproterozoic Officer Basin of Western Australia to Calculate the Timing of Petroleum Charge

K. Ameed R. Ghori

Presentation

• Petroleum prospectivity -Principles & Processes -Basin Modelling Objective of study -Location & Stratigraphy -Modelling Results & Conclusions

Prospectivity—Controlling Factors

Petroleum charge – source type & maturation, hydrocarbon expulsion, migration, & charge timing Trap – structure, reservoir & seal Preservation thermal history & meteoric water invasion

Petroleum System

Timing — Generation versus Trap

Petroleum Preservation

Basin Modelling

 Most efficient tool to estimate timing of oil and gas generation

 Reconstruction of burial and thermal histories

 Integration of geophysics, geology and geochemistry

Modelling Type & Purpose

Modelling Procedure

Modelling Procedure

Modelling Procedure

Petroleum Prospectivity of Proterozoic

- Oil and gas accumulation will continue to be found in Proterozoic rocks worldwide:
 - where source rocks are organic-rich
 - kerogens not extensively dehydrogenated
 - reservoirs are well preserved.
- Thus these rocks should not be ignored as potential petroleum sources
 - (Hunt, 1996)

Proterozoic Petroleum System

Mesoproterozoic:

- McArthur & Urapungan Supersytems 1.7–1.5 billion years, McArthur Basin
 - World's oldest oil from Urapunga 4 well

Neoproterozoic:

 Centralian Supersystem: Amadeus, Ngalia, Georgina, & Officer basins — 1.00 –0.54 billion years

Proterozoic Amadeus Basin

Ooraminna 1, 1963 Gas Flow (12 MCFD), Areyonga Formation (~760 Ma) Dingo Gas Discovery, 1981 Arumbera Formation (5 MMCFD) Magee 1, 1992 Gas Flow (63.1 MCFD), Heavitree Quartzite (~ 870 Ma)

Objective

 The objective of this study was to reconstruct the maturation and hydrocarbon generation history to predict the timing of hydrocarbon charge to traps within the Yowalga Area of Officer Basin

 Because thermal maturity and its timing plays an important role in oil and gas generation, migration, accumulation and preservation

Officer Basin, Sub-basin & Well Locations

Petroleum Exploration

Phase 1 - 1965-66
 – 5 Shallow wells by Hunt Group

Phase 2: 1980-84
 – 5 deep wells by Shell & Eagle Group

 Phase 3: 1995- Present
 – 3 wells by GSWA; 3 wells by Amadeus and analysis by JNOC

Geochemistry Data Open file Total Organic Carbon JNOC **GSWA Rock-Eval Organic Petrology** Liquid Chromatography Gas Chromatography **Apatite Fission Track Pyrolysis-GC** GC-MS Visual Kerogen Kerogen Elemental Source Identification

Source Rocks

 Thin but excellent to fair source-beds have been identified in Brown 1 & 2, Empress 1/1A, Hussar 1, Kanpa 1A, LDDH 1, NJD 1, Throssell 1 & Yowalga 3
 Following 5 slides will show:

- Generating Potential
- Kerogen type

Source rock intervals in 3 key wells

Petroleum Generating Potential

Browne 1 & 2 **Empress 1/1A** Hussar 1 Kanpa 1A NJD1 LDDH 1 Throssell 1 Yowalga 3

Rock-Eval Kerogen Typing

Browne 1 & 2 Empress 1/1A Hussar 1 Kanpa 1A NJD1 LDDH 1 Throssell 1 Yowalga 3

Empress 1A

Kanpa 1A

Modelling, 4 Wells & 6 Seismic Locations

- Step 1: 1-D modelling of a single well location to Develop and constraint burial and thermal histories
- Step 2: 1-D modelling of multi-well locations to evaluate geographic maturity variation
- Step 3: 2-D modelling of a geological cross section to evaluate maturation timing across the region

Maturity Calibration

- Time-Stratigraphy & Lithology Wells
- Present-day temperature BHT
- Equivalent %Ro Lamalginite
- Rock-Eval Parameter T_{max}

Palaeotemperatures — AFTA

Modelling Parameters

Present-day temperature: 25°C Heat flow: Transient Compaction: Bmod 2-D fluid flow Maturity calculation: LLNL Kerogen kinetics: 1% type II

Maturity — Organic Petrology

Browne 1 Browne 2 Dragoon 1 **Empress 1/1A** Hussar 1 Kanpa 1A LDDH1 Lungkarta 1 NJD1 Yowalga 2 Yowalga 3

Maturity — Rock-Eval Pyrolysis

Browne 1 and 2 **Empress 1/1A** Hussar 1 Kanpa 1A LDDH1 NJD1 Throssell 1 Yowalga 3

Empress 1/1A — Calibration

Kanpa 1A — Calibration

Yowalga 3 — Calibration

Empress 1A

Burial & Maturation History

Maturity VR (%Ro)

Immature (oil) Early Mature (oil) Mid Mature (oil) Late Mature (oil) **Mainly Gas**

Kanpa 1A

Burial & Maturation History

Maturity VR (%Ro)

Immature (oil) Early Mature (oil) Mid Mature (oil) Late Mature (oil) **Mainly Gas**

Geographic Maturity Variation

- Maturity at the top of source rock containing units:
 - Brown Formation B2 horizon
 - Brown Formation B4 horizon
 - Hussar Formation H3 horizon
 - Kanpa Formation K1 horizon
 - Steptoe Formation S1 horizon

Petroleum Generation Timing

Petroleum Generation Timing

At Seismic Location SP 2030 Line T80–11

Conclusions — 1

 Thin beds with excellent to fair oil generating potential indicate the development of organic rich facies

 Minor oil & numerous bitumen shows indicate the existence of petroleum system within the Neoproterozoic of the western Officer Basin

Conclusions — 2

- Optimum hydrocarbon generation within the Browne Formation was reached and exhausted during the Neoproterozoic
- Younger Hussar, Kanpa & Steptoe
 Formations were not reached to optimum hydrocarbon generation rate during the Neoproterozoic

Their generation rate varied during the geological evolution of the basin

Conclusions — 3

- Thick effective source rock units and commercially viable petroleum system can not be identified from the available dataset but verify and provide incentive to explore more, because:
 - Significant part of the Neoproterozoic is presently within the oil window
 - Thin but good quality oil source-beds
 - Minor but numerous hydrocarbons shows

