

East African Petroleum Conference

Department of Industry and Resources

Petroleum Exploration and Production Department

Petroleum Geochemistry of the Albertine Graben, Uganda

Ameed Ghori—Perth

S. Echegu, J. Lukaye & C. B. Irumba – Entebbe

Acknowledgements

- Permission to present data:
 - Mr Reuben Kashambuzi, Petroleum Exploration and Production Department, Uganda.
- Permission to prepare presentation:
 - Dr Tim Griffin and Mr Greg Carlsen, Geological Survey of Western Australia. Perth.
- Financial support:
 - Mr Ernest Rubondo, Steering Committee EAPC '05, Uganda.
 - Mr John Tychsen, United Nation Office for Project Services (UNOPS), Demark.

Presentation

- Introduction
- Location and Stratigraphy
- Oil and gas seepages
- Source Potential
- Maturation and Generation History
- Conclusions

Introduction

- This study is based on:
 - Geochemical data available on oil seepages at Hohwa, Kibiro, Kibuku and Paraa,
 - Composition, Biomarkers, Carbon Isotopes,
 - First subsurface source rock data available from Heritage Turaco 1 cuttings samples.
 - TOC, Headspace Gases, Palynology.

Africa—Great Rift Valley

Geological Survey of Western Australia

East African Rift System

- Tectonically Controlled Lakes
- Miocene Extension Lacustrine deposit in many half-grabens:
 - Western Arm larger and deeper lakes, high runoff, and cover most of the rift floor. Most are long lived and have surface outlets with stratified waters low in dissolved solids
 - Easter Arm (Gregory) by comparison small, shallow, closed basins with saline, alkaline lakes, extensive volcanism

Butiaba Waki 1

Geological Survey of Western Australia

Stratigraphy – Waki 1

- Kaiso Formation:
 - Quaternary Early Pleistocene (1.8 0.8 Ma).
 Lacustrine sands, shale, and conglomerates
- Kisegi Formation:
 - Tertiary Lower Miocene to Pliocene (22 1.8 Ma). Fluvio-Lacustrine sands, shales, and bituminous shale
- Waki Formation:
 - Jurassic Bituminous shales with fluvolacustrine clastics

Petroleum Seepages

Petroleum System Indication

- Many oil seepages are present within the Albertine Graben indicating active petroleum systems. They are present on the western Congo side and eastern Ugandan side of the Lake Albert,
- Surface oil seepages and two wells with oil shows, Waki 1 drilled in 1938 and Turaco 1, 2 & 3 drilled in 2003-4 are shown on this map,
- I have visited Paraa, Kibiro, Hohwa, Kibuku and Sempaya hot springe seepages.

Seepage Analyses

- 1. Fina Research
- 2. National Iranian Oil Company
- 3. Geomark Research Incorporation
- 4. China National Petroleum Corporation
- 5. National Oil Corporation of Kenya
- 6. Robertson Research International
- 7. Gareth Harriman Geochemical Services
- 8. Geolab NOR
- 9. Ocean Grove

Murchison National Part

- Largest in Uganda 3840 sq. km
- View of Lake Albert from Rift Valley escarpment

 Nile River funnel through 7 m wide gap

Oil Seepages at Paraa, Victoria Nile

Lake Albert, Kabyoşi Oil Seep

Lake Alert, Hohwa Seepage

Lake Albert, Kibiro Oil Seep

Semliki Basin Seepages & Shows

Hydrocarbon Distributions

Seepages

- Kibuku Ocean Grove
- Kibuku Robertson Resarch
- Kibuku Geomark
- Kibiro GHG
- Kibiro Geomark
 - Paara Geomark

Sterane Biomarkers

Seepages

- Kibiro GHC
- Kibiro Geomark
- Kibiro Seep CNODC
- Kibiro Asphalene CNODC
- Paara GHG

 \diamond

*

 \star

¥

Ж

- Paara Geomark
 - Paara Seep CNODC
 - Paara Asphaltene CNODC
 - Kibuku Geomark
 - Kibuku CNODC
 - Kibuku OceanGrove

Carbon Isotopes

Geomark Biomarkers

Botryococcanes–Geolab NOR

• Kibiro Oil Seep

• Hohwa Oil Seep

Seepages Geochemistry Data

Name of Seep Description	Paraa seep	Kibiro seep	Kibuku seep	Hohwa Oil Sands
Organic Matter Type	Non-Marine	Algal type 1	Marine/Terrestrial	Non-marine/Algae
Depositional Environment	Lacustrine	Lacustrine	Estuarine/Bay	Lacustrine
Degradation	Moderate	Extensive	Moderate	Moderate to Strong
Source Rock Maturity	Moderate to Mature	Early to Middle Mature	Early Mature	Early – mid mature
Source Rock Age		No older than Jurassic	Post Early Cretaceous	_
% Sat:Arom:Polars		22:17:60	50:25:20	18:20:28 (sat/aro ≈1)
Carbon Isotope (PPT-PDB)		-23.8	-27.9	_
Pr/Ph			6.2-6.7	_
Steranes %C27:C28:C29	37:23:40	35:42:23	28:24:48	_
Ts/Tm	1.63	1.46	0.3	_
Diasterane Index	1.47	1.43		_

Seepages — Conclusions

- The Hohwa, Kibiro, Kibuku and Paraa oil seepages indicate active petroleum systems within the Albertine Graben, yet their source and likely charge volume remain elusive.
- Biomarkers and carbon isotope data from these seepages indicate varying maturation, biodegradation, and source maturity, but all are sourced from lacustrine source pods possibly of Cretaceous-Tertiary age but older sources are possible.

Source Rock Evaluation

- The evaluation of petroleum source rock is based on geochemical analyses undertaken by Petroleum Exploration and Production Department (PEPD),
- On cuttings samples from Turaco 1,
- Total organic carbon (TOC),
- Headspace-gas, and
- Palynofacies analyses.

TOC Analysis at PEPD

Turaco 1–Organic Richness

Turaco 1 Organic Richness—Headspace Gases

Turaco 1 – Burial History

Turaco 1 – Maturity (VR)

Turaco 1 – Transformation Ratio

Turaco 1 – Generation Timing

Turaco 1 Geochemistry base on total organic carbon and palynofacies analyses

Miocene Petroleum System, Albertine Graben indicated by geochemistry and Palynology of oil seepages and source rocks

Prospectively

- Sedimentary deposit exceed 6000 m,
- First deep well drilled in 1938 (1237 m) with reported oil shows,
- Three deep wells drilled in 2002-4 by Heritage (~3000 m) with shows, gas flow and encouraging results,
- Live oil shows and Favourable Geology.

Sedimentary Basins

- Rhino Camp Basin (EA 5)
- Pakwach Basin (EA 1)
 - Paraa oil shows
- Northern Lake Albert Basin (EA 2)
 - Waki 1 Well with oil show
 - Kibiro oil show
- Southern Lake Albert Semliki Basin (EA 3)
 - Kibuku oil show
 - Turaco Wells shows
- Lakes Edward-George Basin (EA 4)

Conclusions

- Organic-rich shale beds are present between 1965–2110 m (115 m thick) and 2465–2487 m (+22 m thick) within the Upper Miocene Kasande-Kakara Formation,
- Organic richness of these beds is up to 4.8% TOC, and
- Palynofloras from four samples indicate a mature, non-marine, oil-prone lacustrine facies of Miocene age.

Conclusions

- These organic-rich shale beds demonstrate the presence of a high quality oil-prone source within the basin, that are in the early stages of the oil-generative window in Turaco 1,
- Such beds could have generated significant quantity of oil and gas in deeper parts of the basin,
- where they should be at peak maturity, and imply a Miocene petroleum system within the Albertine Graben.

Recommendations

Petroleum Geochemistry and Biostratigraphy of East Africa: Kenya, Tanzania and Uganda

- The East African Rift System (EARS) and the coastal basins of East Africa are the main focus for oil and gas exploration that require systematic evaluation of their petroleum systems.
- The regional petroleum geochemical and biostratigraphic study is the first essential stage to evaluate oil and gas potential of these basins.

Research, training and team building project

