
Abstract

Three unconformity-bounded sedimentary successions
exist in most parts of the Officer Basin in Western
Australia: Supersequences 1, 3, and 4. The bounding
unconformities correlate with tectonic episodes, and in
particular the Areyonga Movement (750 Ma) appears to be
responsible for the larger structures in the Officer Basin,
and separates Supersequence 1 from Supersequence 3.
Structural and stratigraphic variations within the overlying
Supersequences 3 and 4 are attributed to later
deformation. Three main phases of hydrocarbon
generation in the latest Neoproterozoic, Cambrian and
Late Palaeozoic correlate well with initial migration and
trap formation during the Areyonga Movement and late
migration and trap formation during the later
deformations. 

Faults, unconformities, facies changes, and salt-
associated traps occur throughout the basin but remain
untested. In particular, episodic salt movement may have
resulted in the formation of halokinetic traps within the
younger successions. The ultimate petroleum potential of
the western Officer Basin still remains to be proven but
may be significant. 

Introduction

The Officer Basin (Fig. 1) covers an area of 320,000 km2
in Western Australia and has a Neoproterozoic sedimentary
section in excess of 6 km thick. The stratigraphy of the Officer
Basin has been described by many authors (Jackson & van de
Graaff, 1981; Townson, 1985; Phillips et al., 1985; Williams,
1992, 1994; Perincek, 1996, 1997; Carlsen et al., 1999; Grey,
1999; Stevens & Carlsen, 1998; Stevens & Apak, 1999; Apak
& Moors, 2000a, b; 2001), and can be broadly divided into

four supersequences (SS1-4, Fig. 2). Supersequence (SS) 2 is
absent in the Western Australian part of the basin.

Hydrocarbons in the Officer Basin have been encountered
in ten wells in the form of gas, live oil, bitumen, oil
fluorescence, and oil stains. The most recent gas show, in 2002,
occurred in the Geological Survey of Western Australia's
stratigraphic test Vines 1 (Apak et al., 2002).

In this study, reprocessed seismic data (JNOC 1997) in the
Yowalga area were reinterpreted and integrated with previous
interpretations of Perincek (1997) and JNOC (1997) (Fig. 3).
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Figure 1: Regional tectonic setting of the western Officer Basin
showing major structural elements and sub-areas, and
surrounding tectonic units.
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An seismic interpretation for the Gibson and Lennis areas
(Durrant & Associates, 1998), based on final stack processed
sections and migrated processed sections where available in
these areas, was also used in this study. A variety of traps such
as faults, thrust ramp folds, drape folds, and erosive channels
have been identified. Most of these traps types remain poorly
tested or untested in the Officer Basin.

The objectives of this paper are to discuss the
Neoproterozoic successions in relation to the structural
development, and to illustrate the hydrocarbon prospectivity
and play concepts within the basin. 

Regional setting

The Officer Basin is bounded to the northeast by the
Musgrave and Rudall complexes and the Warri Arch, a gravity
ridge, which forms the boundary between the Officer and

Canning basins (Fig. 1). The Officer Basin is overlain by the
Phanerozoic Gunbarrel Basin, which passes north into the
Canning Basin. The Cretaceous to Tertiary Eucla Basin
overlies the southern flank of the Officer Basin. The adjacent
older tectonic units include the Yilgarn Craton, the Albany-
Fraser Orogen, and the Collier, and Earaheedy basins (Tyler &
Hocking 2001).

The early division of the Officer Basin into sub-basins was
based on gravity (Fig. 4) and aeromagnetic data, but seismic
data do not indicate significant structural subdivision of the
Neoproterozoic succession into discrete sub-basins. The
Neoproterozoic succession thins towards the southern margin
of the basin, but local depositional thinning and thickening
are not significant enough to define discrete depositional
systems in separate sub-basins (Apak & Moors, 2001). Thus
we prefer to use the term areas, which coincide to what have
been previously defined as the sub-basins. 

The main depocentre to the north of the Officer Basin
occurred along the northern edge of the basin (Apak &
Moors, 2000a, b). The resultant asymmetric sediment
accumulation had a long, gentle southern flank and short,
steep northern flank. Due to overall poor seismic data and
massive salt emplacement, the exact nature of the northern
boundary of the Officer Basin is uncertain. However, in the
Gibson area, seismic line N83-3A shows that interpreted
Supersequence 1 strata onlap north onto the older units of the
Warri-Arch (Fig. 5). The western and southern limits of the
Officer Basin are defined as where the Officer Basin succession
has been removed or not deposited. 

Townsend (1985) identified four major fault and
lineaments trends from gravity, aeromagnetic and Landsat
data that reflect the structure of basement and controlled
depositional patterns in the western Officer Basin (Fig. 1).
These structures trend northwest, northeast, north, and east-
northeast to east. Of these structural trends, the northwesterly
trending faults are dominant and are reflected in major salt-
associated thrusting. North and northeast-trending faults have
a right lateral strike-slip component. 

Sediments of the Officer Basin were deposited
unconformably over variably metamorphosed Meso-
Palaeoproterozoic sedimentary rocks, the Albany-Fraser
Orogen, Musgrave Complex, Paterson Orogen and Yilgarn
Craton. Following deposition of Supersequence 1 strata, a
strong structural phase, the Areyonga Movement, caused
significant folding and erosion in the basin. After the
Areyonga Movement, gentle subsidence took place with the
establishment of glacial conditions early in the Marinoan, and
deposition of the Wahlgu Formation (Supersequence 3).
Uplift or base-level change during the Petermann Ranges
Orogeny (Fig. 2) resulted in partial erosion of the Wahlgu
Formation and deposition of Supersequence 4 including the
McFadden Formation equivalent. The Delamerian Orogeny
terminated Officer Basin deposition. Extensive flows of
tholeitic basalt of the Table Hill Volcanics are defined as the
basal sequence of the subsequent Gunbarrel Basin.
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Figure 4: Bouguer gravity image of the Western Officer Basin and surrounding areas.
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Basin development

Within the Officer Basin succession in Western Australia,
four major unconformities separate three stratigraphic units
(Fig. 2). The four main unconformities, including the basal
unconformity, and the post SS1, 3, and 4 unconformities
reflect the Miles Orogeny, Areyonga Movement, Petermann
Ranges Orogeny and Delamerian Orgeny respectively (Fig. 2).
These features shall be discussed in stratigraphic order.

The Basal Unconformity

The basal unconformity separates the Officer Basin from
the underlying Mesoproterozoic and older rocks. Because
overlying massive salt commonly masks the basal
unconformity, this unconformity is not a prominent
reflection. However, where the contact relationship is angular,
the horizon can be picked with some confidence (Fig. 5). 

Supersequence 1

There is little seismic control on the lower units of
Supersequence 1, the Townsend Quartzite and Lefroy
Formation. However, the overlying units, the Browne, Hussar,
Kanpa and Steptoe formations are better understood. Apak &
Moors (2000a, b; 2001) demonstrated the presence of
conformable and laterally corelative genetic units bounded by
flooding surfaces. The sequence stratigraphic units of
Supersequence 1 coincide closely with the previously defined
lithostratigraphic subdivision of Townson (1985). In the
Browne Formation (Sequence B), the dominant lithologies are
mudstone, siltstone, dolomite, and halite. In general, the
Hussar Formation (Sequence H), Kanpa Formation (Sequence
K), and Steptoe Formation (Sequence S) consist of sandstone,

dolomite, shale, and minor evaporite deposits. Secondary
transgressions, observed on seismic data as high-amplitude
reflections, are used to define parasequence sets (Apak &
Moors, 2000a, b; 2001). Each sequence comprises numerous
parasequence sets that show progradation with coarse clastic
beds or tidal flat/supratidal carbonate and evaporitic deposits
spread across the deeper water deposits. Sedimentary facies
defined from well data indicate dominantly shallow water to
sabkha and restricted hypersaline environments for the
Browne Formation. Overlying formations were probably
deposited within a range of restricted shallow-marine shelf,
shoreface and/or lagoonal depositional environments. 

Subsidence appears to have occurred intermittently, being
characterised by abrupt water depth increases, followed by
rapid sedimentary progradation across the basin (Apak &
Moors, 2000b; 2001). The cycles are typified by flooding with
a basal quiet-water facies (fine-grained lithology) followed by a
shallowing with coarsening upwards facies. Major
transgressions, characterised by strong amplitude events,
define the base of each sequence (Fig. 2). Thick halite deposits
within Sequence B were mobilised during several tectonic
phases creating dramatic variations in thickness of the units,
and in structural complexity. In most seismic lines
Supersequence 1 strata are characterised by continuous parallel
reflectors that are traceable in most parts of the basin except
where the reflectors are truncated by younger unconformity
(Figs 6 and 7).

Post-Supersequence 1 Unconformity

Following deposition of the Supersequence 1 strata, the
Areyonga Movement caused extensive erosion prior to
deposition of the Supersequence 3 strata (Wahlgu Formation).
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During this period, Supersequence 1 strata were folded and
faulted and eroded, particularly over salt-emplacement highs
and marginal areas (Fig. 8). This major unconformity has been
influenced by salt movement and is characterised by sharply
erosive valleys, and channel-like features at the base of the
Wahlgu Formation (Fig. 9). The Post-Supersequence 1
unconformity is correlatable throughout most parts of the basin.

Salt Emplacements

Salt mobilisation associated with the Areyonga Movement,
can be subdivided in the Yowalga area into laterally persistent
zones, including the salt-ruptured zone (closest to the
Musgrave Complex), the thrusted zone, and the western
platform (JNOC, 1997) (Fig. 10).

In the salt-ruptured zone salt penetrated the overlying
sedimentary strata. Some salt diapirs such as the Browne,
Woolnough and Madley diapirs have been recognised from
surface mapping. The thrusted zone is a zone of compression
along thin-skinned, low-angle thrust faults, lubricated by salt
within the Browne Formation (Fig. 11). The stresses
responsible for these features are believed to be either
compression involving the Musgrave Complex to the north or
gravitational collapse of thrusted uplifts resulting from a
reduction in compressional stress following the Areyonga

Movement. The folded and uplifted sedimentary pile became
unstable and began to glide along the salt beds toward the
stable Western Platform.

Seismic line N 83-11 in the Gibson area (Fig. 12)
illustrates high angle reverse faulting associated with salt
emplacement. Faulting and salt movement predate or are
syndepositional with the basal part of the McFadden
Formation equivalent. Thinning and onlapping of the
McFadden Formation equivalent over the Wahlgu Formation
indicates the timing of the deformation in this area (Fig. 12).
Angular contacts between the Wahlgu Formation and the
McFadden Formation equivalent are only evident adjacent to
the salt diapirs. 

Faulting and Folding

Large-scale folds are either halokinetic or ramp anticline
folds associated with tectonic and gravity-driven thrust faults.
Most fault displacements are confined to the Supersequence 1
strata (Figs 6 and 9). In the Yowalga area, the most common
faults are thin-skinned listric thrust faults that are detached
along the salt horizon in Sequence B. Faults are often present
below salt intrusions, indicating that salt movements occurred
through pre-existing zones of weakness (Durrant & Associates,
1998). 
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Listric faults lubricated by salt appear to be less common in
the Lennis area. Major salt walls continue their southeasterly
trend from the Yowalga area. In the Gibson area, many of the
thrust faults are listric and they appear as high angle reverse
faults (Fig. 12). Although the reflection record below salt is
poor, these faults appear to flatten with depth and probably
detach near the base of salt forming basal thrust planes. 

In the Gibson area, seismic line N 83-6 (Fig. 13) illustrates
an apparent normal fault based on offsets in the shallow and

deep section. However, erratic changes in thickness of some
units, both in the hanging wall and footwall, are taken as
evidence of strike-slip faulting that shows syndepositional
faulting in the lower part of supersequence 1 strata (Fig. 13). 

The interval from base Neoproterozoic to the base salt (the
lower part of the Browne Formation) is significantly thicker on
the downthrown block. In contrast, an overlying section from
the base salt to the top lower salt is thicker on the upthrown
block. Post Supersequence 1 reactivation of this fault has
resulted in significant erosion of the Steptoe Formation on the
upthrown block (between the Kanpa and Wahlgu formations).
Further reactivation of this fault also resulted in minor
displacement of the post-Supersequence 3 unconformity (base
McFadden Formation equivalent).

Supersequence 3

Following the Areyonga Movement, gentle subsidence
coincided with deposition of the glacigene Wahlgu Formation
(Apak & Moors, 2001), early in the Marinoan (Grey et al.,
1999). In Empress 1 and 1A, the Wahlgu Formation consists
predominantly of sandstone (in part diamictitic) interbedded
with mudstone and minor dolomite (Stevens & Apak, 1999).
Supersequence 3 has been eroded in many places, particularly
between the Gibson and Yowalga areas, but it still extends
through most of the basin (Figs 9, 12). Large channels are
present and in some places cut down into the Kanpa
Formation (Fig. 14). There are also numerous large
intraformational channels within the Wahlgu Formation.
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Post-Supersequence 3 Unconformity

Following deposition of Supersequence 3, the Petermann
Ranges Orogeny event is interpreted to have caused the post-
Supersequence 3 unconformity between the McFadden
Formation equivalent and the underlying Wahlgu Formation
or older units in the western Officer Basin. In areas adjacent to
salt emplacements, this unconformity is angular (Fig. 12) but
in other areas distant from salt walls, the contact between the
Wahlgu Formation and McFadden Formation equivalent
appears to be disconformable. 

Supersequence 4

Supersequence 4 consists of the McFadden Formation in
the Savory Basin region and a correlative unit here termed
McFadden Formation equivalent in the remainder of the basin.
The McFadden Formation equivalent is a siliciclastic sequence
that varies from sand-dominated to shale-dominated in
different parts of the western Officer Basin. The formation
onlaps and thins over pre-existing structural highs (Fig. 12).
Williams and Bagas (2000) suggest that the McFadden
Formation in the Savory area has been weakly deformed during
the closing stages of the Paterson Orogeny, which is correlated
with the Petermann Ranges Orogeny of Central Australia
(Bagas et al., 1995; Perincek, 1997; Tyler et al., 1998). 

In Vines 1, a stratigraphic hole drilled in the Waigen area,
the succession from 4 to 2017 m is a high-energy
conglomeratic unit named the Vines Formation (Apak et al.,
2002). The sedimentary character indicates rapid deposition of
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Figure 14: Seismic line N 83-8 showing a large channel development within the Wahlgu Formation. For location of seismic line see
Figure 3.
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over 2 km of submarine diamictites and turbidites in an
actively subsiding basin. There are no seismic or other data
available to define the extent or character of the formation and
its relationships with other units. A gas show at 1482 m in this
well is significant evidence for petroleum potential in the
basin. The age of the formation is poorly constrained, but its
maximum age is latest Neoproterozoic to earliest Cambrian
(Apak et al., 2002). 

Post-Supersequence 4 Unconformity

The Table Hill Volcanics and younger rocks
unconformably overlie Supersequence 4. High amplitude
reflections are generally associated with the presence of the
Table Hill Volcanics. In some areas, especially in the Gibson
area, the McFadden Formation equivalent and parts of the
underlying successions have been truncated by the Delamerian
Orogeny and younger deformation events, in particular over
salt-emplacements and marginal areas (Moors & Apak, 2002). 

Salt Emplacements

In the Gibson area, late salt movement in some structures
penetrates Supersequences 1 through 4 (Fig. 15). Late salt
movement does not effect all structures and is interpreted to be
driven by overburden density imbalance. The deposition of a
substantial thickness of Supersequence 3 (Wahlgu Formation)
and Supersequence 4 (McFadden Formation equivalent)
successions probably accounts for the continued mobility of
the salt. Salt movement also displaces the Paterson Formation
and even the Tertiary deposits in the Madley diapirs,
suggesting that in some regions minor salt movement may
have continued up to present time. 

Gunbarrel Basin

The Table Hill Volcanics mark the commencement of a
new depositional sequence that has been assigned to the
Gunbarrel Basin (Hocking, 1994). The Table Hill Volcanics
are lower Ordovician (484 ± 4 Ma) porphyritic and
amygdaloidal tholeitic basalt at Empress 1 and 1A (Stevens &
Apak, 1999). Volcanic rocks are present at the same
stratigraphic level across WA, NT, and SA, but absent from
some parts of the Gibson area due to post depositional regional
and local uplift. The seismic response of the top of the Table
Hill Volcanics is clear and distinct on many of the seismic lines
and is used as a regional marker in the Gibson, Yowalga and
Lennis areas. Salt diapirs have penetrated or folded the Table
Hill Volcanics in some structures. 

Petroleum Potential

Thin but organic-rich beds with excellent to fair oil
generating potential together with good reservoir and seal
rocks are present in the basin. Oil and gas prone source beds
with fair to excellent hydrocarbon-generating potential are
found in Browne 1 and 2, Empress 1/1A, Hussar 1, Kanpa 1A,
LDDH 1, NJD 1, and Yowalga 3, as indicated by total organic
carbon, Rock-Eval pyrolysis and rock extract analyses. The
measured maturity ranges from immature to overmature as
indicated by organic petrology and Rock-Eval pyrolysis. A
significantly thick part of the Neoproterozoic succession in
Yowalga 3 (1500-3000m) is presently within the oil window.
The present-day depth to the top of the oil window in Kanpa
1A and Yowalga 3 (Yowalga area) is about 1000 m deeper than
in Hussar 1 (Gibson area) (Ghori, 1998a, b).
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The presence of both carbonate and siliciclastic
sedimentary rocks in the Officer Basin has produced many
opportunities for reservoir development. Potential siliciclastic
reservoirs are present in the Lennis Sandstone, McFadden
Formation equivalent, Wahlgu, and Lefroy formations and the
Townsend Quartzite, whereas the Steptoe, Kanpa, Hussar, and
Browne formations contain potential hydrocarbon reservoirs
in both quartzose and carbonate lithologies. 

Seals in the Officer Basin need to be considered from a
number of perspectives. Local seals can be effective in four-way
dip-closed traps or fault-controlled traps and as lateral seals in
stratigraphic traps. However, regional seals are necessary to
control the migration paths of petroleum, especially for long-
range migration. Most of the formations contain lithologies
that would make effective seals at all scales. Seal risk is highest
for the less deeply buried sand-prone units such as the Wahlgu
Formation and the McFadden Formation equivalent. 

The best shale seals were deposited on flooding surfaces
and form the bases of the Kanpa, Hussar and Steptoe
formations. These shale units reach thicknesses of over 100 m
in the Hussar Formation in Kanpa 1A.

The hydrocarbon generative history of the region, based
on multi-dimensional basin modelling of geological sections
drawn from wells and seismic, indicates significant differences
in timing and levels of kerogen transformation to petroleum in
the Brown, Hussar, Kanpa, and Steptoe formations. The main
phases of oil generation within the Neoproterozoic succession
were during the latest Neoproterozoic, Cambrian and
Permian–Triassic. These phases vary both stratigraphically and
geographically across the basin due to variable effects of at least
three major tectonic events — the Neoproterozoic Areyonga
Movement and Petermann Ranges Orogeny, and the
Carboniferous Alice Springs Orogeny (Ghori, 2000). 

Within the Browne Formation, the maximum rate of
hydrocarbon generation was reached early in the basin history
and most of the hydrocarbon generative potential was
exhausted during the Neoproterozoic. However, the Hussar,
Kanpa, and Steptoe formations were not buried so deeply and
hydrocarbon generation from these units extends into the
Phanerozoic. Higher maturity levels are observed at shallow
depth in high amplitude folds at LDDH 1, Dragoon 1 and
Brown 1 and 2. Elswhere the oil window is very deep such as
at Yowalga 3. The extent and effect of Mesozoic and Tertiary
tectonic events are poorly understood, because the preserved
post-Alice Springs Orogeny section is thin and irregularly
distributed (Ghori, 2000; 2001).

Traps

The presence of salt within the Officer Basin has resulted
in a wide range of possible trap configurations. Warren (1989)
defined many possible salt-related trap styles based on
structure and porosity. The main play types are summarised in
Figure 16 and a brief outline for each type is presented below. 

Structural Traps

Thrust Faults and Folding

Thrust faults have typically initiated within the Browne
Formation salt units, and penetrate upwards into the overlying
formations. They may create drag rollover structures within the
units they penetrate, or deform the overlying units into
anticlinal features (Fig. 12). With the presence of salt on the
fault plane, fault-plane sealing would be excellent. A serious risk
is that tensional crestal faults may leak. Another risk is loss of
hydrocarbon charge during post migration fault reactivation. 
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Drape Folding and Salt Structures

Salt emplacements do not always penetrate the entire
Officer Basin succession and four-way dip closure in the
suprasalt section is sometimes present. The prospect of
tensional crestal faults in carbonate beds may be a risk where
the Supersequence 1 strata have been folded. In the salt
ruptured zone (Fig. 10), salt walls create two facing salt-sealed,
3-way dip closures. These structures can be of substantial size
(Fig. 12). The salt, which is able to maintain its integrity over
a long period, is an effective seal and salt walls provide effective
migration barriers. Timing of the diapiric phase with respect to
petroleum charge is good, as the structures were available
before petroleum expulsion was completed. Structures isolated
from source pods by these salt walls may be in an effective
migration shadow. 

Fractured Reservoir

Fracture systems may be present within folded carbonates
of Supersequence 1. These fractures variable associated with
thrust faults crestal extension. Although the carbonates are not
thick, the possibility of stacked reservoirs with pay increases
the potential reserves, but these fractured reservoir fairways
may be limited. 

Stratigraphic Traps

Unconformity Traps

Supersequence 1 strata have been tilted and severely eroded
adjacent to salt injection features (Fig. 12) and along the basin
margins. Leaching of soluble components such as halite,
anhydrite, and carbonate from the sandstone and carbonate,
and development of karst within carbonates may create
extensive secondary porosity. 

A strength of the unconformity trap is the fact that
unconformities are recognised to have potential as regional
migration paths for fluids being expelled from compacting
basins. A weakness of unconformity trap configurations below
the major unconformities is that the overlying strata may not
be an effective seal. For example, in the Wahlgu Formation the
principal lithology is sandstone that, although glacigene,
appears to be an inadequate seal as in Empress 1 and 1A.
However, in Hussar 1 in the Gibson area the lower 100 m of
the formation is siltstone/claystone dominated and could be an
adequate top seal.

Pinchout Traps

Differential subsidence in the Officer Basin has resulted in
downlap and onlap of units providing opportunities for pinch
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out traps. A good example occurs in the Wahlgu Formation
and McFadden Formation equivalent, in the salt-withdrawal
synclines adjacent to the salt walls in the Lennis area. Figure 17
shows sedimentary units onlapping against the sides of the salt
rims, creating numerous potential pinchout traps. From a
petroleum-charge perspective, the timing of such traps is
excellent, and there is a good chance that such a configuration
could be maintained over a long period, preserving any
petroleum accumulation. 

Facies Changes

Isolated shoreface sand bodies within fine-grained facies,
such as an offshore bar, are possible stratigraphic traps. The
early timing of such traps is excellent with respect to charge
and the stable, low-angled ramp configuration of the area
should enable the maintenance of the trap integrity over long
periods of time. 

There are numerous horizons where halite and anhydrite
have been formed in desiccation zones, plugging the porosity
of the sediments either during, or just after, deposition. Such
traps are also early with respect to charge and could be
expected to retain any accumulation over a long period.

Erosive Channel

Frequent emergence is well documented in the Officer
Basin successions and channels filled with high-energy,
reservoir-quality sediments sealed by the subsequent
transgressive shale (Fig. 14) are identified exploration targets.
Again the timing with respect to charge is excellent, and the
retention of petroleum in this play type is likely to be good. 

Prospectivity

The vast area covered by the western Officer Basin is under
explored and the sparse well control precludes a complete
assessment of the source-rock potential of the Neoproterozoic
succession. The minor shows encountered prove that
petroleum systems exist in the basin. Effective source rock
units and commercially-viable petroleum systems cannot be
identified from the available dataset. However, thin good-
quality source units have been verified in the Browne, Hussar,
Kanpa, and Steptoe Formations. A significant part of the
Neoproterozoic section is presently within the oil window, and
contains good reservoir and seal rocks suggesting further
exploration of this frontier region is warranted. 

Most units contain lithologies (salt, shale and carbonate)
that would make effective seals at all scales. Thinner intervals
would act as local seals. Thick regional seals formed by halite
in the Browne Formation and shale in the Hussar, Kanpa and
Steptoe formations have also likely controlled regional
migration pathways. Thinner shale and carbonate seals are
only effective locally. The presence of major evaporitic intervals
further enhances the potential of the area, as evaporites are
associated with large petroleum accumulations elsewhere in
the world. There have been no valid tests of sub-salt plays to
date in the basin. The ultimate petroleum potential of the
Officer Basin is unproven but it may be significant.
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